碱金属蒸气灯的光谱辐射特性

王焕灯 方无忌 于开义 钱玉兰 金庭臻 李新娣 张基林 卓美珍

(中国科学院上海光机所)

提要:测量了碱金属蒸气灯的相对光谱分布,观察了碱金属蒸气灯的相对有效 辐射效率、共振线自吸收后的光谱峰值间隔、红蓝翼谱带半极大值全宽与输入灯内功 率的关系。

Spectral characteristics of radiation from alkali-metal vapor lamps

Wang Huandeng, Fang Wuji, Yu Kaiyi, Qian Yulan, Jin Tingzhen, Li Xindi, Zhang Jilin, Zhuo Meizhen

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Relative spectral distributions of several alkali-metal vapor lamps were measured by means of a fully automatic spectral measuring apparatus. The dependence of the relatively effective radiation effeciency of the lamps, separations between spectral peaks formed after selfabsorption of resonance lines and the FWHM of the red and blue spectral wings on input power of the lamps are studied.

一、前言

文献[1]已指出,碱金属蒸气灯在可见和 近红外光谱区有很强的谱带辐射,适当选择 填充物质和工作条件可以使碱金属蒸气灯成 为 Nd³⁺:YAG 的有效泵浦源。

本文报导我们测量钾汞灯和钾铷灯在腔 外自由冷却和连续点燃条件下,在4000~ 11400Å光谱范围内的相对光谱强度分布、 相对有效辐射效率、相对光效、共振线自吸收 的光谱峰值间隔,以及红翼和蓝翼半极大值 全宽与输入灯内功率的关系等结果。文中提 到的"相对有效辐射效率",是指落在 Nd³⁺: YAG 的四个主要吸收带内的光谱辐射积分 面积(任意单位)与点灯功率之比。根据文献 [3],我们把 Nd³⁺:YAG 的四个主要吸收带 取为:5670~6000Å、7275~7650Å、7900~ 8230Å和 8670~9000Å。"总相对有效辐射 效率"则是上述四个带的"相对有效辐射效 率"之和。"相对光效"指的是灯在4000~ 11400Å光谱范围内的光谱辐射积分面积值 (任意单位)与灯功率之比。

二、实 验

本实验中所用的碱金属蒸气灯是用白宝 收稿日期:1981年7月6日。

· 465 ·

光

表1 实验用碱金属灯的规格参数

灯的编号	类 别	内管材料	内径(毫米)	电极间距(毫米)	电极材料	灯内填充情况
H-7#	K-Hg灯	白宝石	5.5	80	Ce-W	K~2毫克, Hg~15毫克, Xe~190托
H-17#	K-Hg 灯	多晶氧化铝	5.5	60	Ce-W	K~2毫克, Hg~15毫克, Xe~40托
R-9#	K-Rb 灯	白宝石	5.5	80	Ce-W	K~2毫克, Rb~2毫克, Xe~190托
R-6#	K-Rb 灯	多晶氧化铝	5.5	60	Ce-W	K~2毫克, Rb~2毫克, Xe~190托

石管和多晶氧化铝管制作的 钾汞灯 和 钾 铷 灯,为防止铌端帽在高温下氧化,这些灯都做 成双层结构,外管为 ϕ 12 毫米石英管, 钼箔 封接。外管和内管之间真空度为 10⁻⁵ 托。碱 金属蒸气灯的有关规格参数如表 1 所示。

是要派布工具香花物并最重要

光谱测量系统如图 1。它是一套由石英 棱镜单色仪、JS-10B 工业计算机、模数转换 器和输出记录设备(包括 X-Y 记录仪和数 字打印机)组成的全自动化测量系统。直流 预电离点燃的碱金属灯放在单色仪之前,由 一透镜把它成像到单色仪的入射狭缝上,光 电倍增管接收的信号 经模数转换后送到 JS-10B 计算机,计算机处理后的光谱数据用 记录设备(包括数字打印机和扫描记录仪)记 录。测量过程中单色仪入射和出射狭缝固定 在 0.1 毫米。

光谱分布的测量方法是能量比较法^[2], 即被测的碱金属灯辐射与一定亮温的钨带灯 辐射相比较(我们实验中钨带灯亮温度是 2100°C)。设系统是线性的,钨带灯的单色辐 射亮度为 $E_{w_{\lambda}}$,取样时间为 Δt_{w} ,钨带灯取光 面积为 A_{w} ,钨带灯对单色仪入射缝所张的立 体角为 Ω_{w} ,则测量系统的读数 $R_{w_{\lambda}}$ 为:

 1—预电离和直流电源; 2—碱金属灯; 3—聚焦 透镜; 4—石英梭镜单色仪; 5—光电倍增管; 6—模 数转换器; 7—工业计算机; 8—X-Y 记录仪; 9—数字打印机 其中 C 为比例常数。同样对于被测的碱金属灯也有:

$$R_{a_{\lambda}} = C E_{a_{\lambda}} \varDelta t_a A_a \Omega_a \varDelta \lambda \tag{2}$$

如果两式相除,则:

$$E_{a_{\lambda}} = \frac{R_{a_{\lambda}}}{R_{w_{\lambda}}} E_{w_{\lambda}} K \tag{3}$$

其中 $K = \frac{\Delta t_w A_w \Omega_w}{\Delta t_a A_a \Omega_a}$ 为常数,对于相对测量 来说,这个常数是无关紧要的。因此,在测 得 R_{a_x} 和 R_{w_x} 之后根据(3)式就可确定被测 灯的相对光谱分布值^[23]。

三、结 果

图 2 示出钾-汞灯和钾-铷灯在 160 瓦和 168 瓦功率下测得的相对光谱强度 分布,由 图 2 可知,可见光谱区和近红外光谱区集中 了碱金属灯的绝大部分辐射。灯的工作温度

和碱金属蒸气压对灯的光谱分布和辐射有很大的影响。表2给出了钾-汞灯和钾-铷灯相对光效与灯功率(也就是灯的工作温度)的关系。表3给出了这两种灯在不同功率下在Nd³⁺:YAG四个吸收带中的相对有效辐射效率。

由表 3 看到,不论是钾汞灯还是钾铷灯, 在这四个吸收带内的相对有效辐射效率随灯 的功率变化而有明显变化。为了直观起见,图 3(*a*,*b*)画出了钾汞灯和钾铷灯在四个 Nd³⁺: YAG 吸收带内的相对有效辐射特性 随灯 功 率的变化特性。

表2 碱金属灯的相对光效与功率的关系

灯 号	功率(瓦)	相对光效		
钾−汞灯	160	3.65×10^{-1}		
(H-17 [#])	282	4.11×10-1		
	375	4.08×10^{-1}		
钾-汞灯	106	4.28×10^{-1}		
(H-7 [#])	126	4.60×10^{-1}		
	194	4.49×10^{-1}		
	238	$3.34 imes 10^{-1}$		
钾−铷灯	150	$5.47 imes 10^{-1}$		
(R-6#)	256	2.75×10^{-1}		
	400	2.52×10^{-1}		
	418	2.27×10^{-1}		

表3 碱金属蒸气灯的相对有效辐射效率

· · · · · · · · · · · · · · · · · · ·	功 率	在 Nd ³⁺ : YAG 四个吸收带中的相对有效辐射效率				总相对有效辐
灯 号	(瓦)	5670~6000 Å	7275~7650 Å	7900~8230 Å	8670~9000 Å	射效率
H-17#	160 282 375	$\begin{array}{r} 7.5\!\times\!10^{-3} \\ 8.17\!\times\!10^{-3} \\ 1.04\!\times\!10^{-2} \end{array}$	$\begin{array}{r} 5.5 \times 10^{-2} \\ 2.27 \times 10^{-2} \\ 1.07 \times 10^{-2} \end{array}$	$\begin{array}{r} 4.7 \times 10^{-2} \\ 6.64 \times 10^{-2} \\ 5.73 \times 10^{-2} \end{array}$	$\begin{array}{r} 2.00 \times 10^{-2} \\ 3.69 \times 10^{-2} \\ 3.50 \times 10^{-2} \end{array}$	$\begin{array}{r} 1.29 \times 10^{-1} \\ 1.34 \times 10^{-1} \\ 1.13 \times 10^{-1} \end{array}$
H-7#	106 126 194 238	$\begin{array}{c} 7.53 \times 10^{-3} \\ 7.94 \times 10^{-3} \\ 9.30 \times 10^{-3} \\ 6.72 \times 10^{-3} \end{array}$	$\begin{array}{r} 6.97 \times 10^{-2} \\ 5.16 \times 10^{-2} \\ 3.76 \times 10^{-2} \\ 1.09 \times 10^{-2} \end{array}$	$\begin{array}{r} 5.74 \times 10^{-2} \\ 7.38 \times 10^{-2} \\ 7.97 \times 10^{-2} \\ 5.54 \times 10^{-2} \end{array}$	$\begin{array}{c} 2.54\!\times\!10^{-2} \\ 3.17\!\times\!10^{-2} \\ 3.40\!\times\!10^{-2} \\ 3.56\!\times\!10^{-2} \end{array}$	$\begin{array}{c} 1.60 \times 10^{-1} \\ 1.65 \times 10^{-1} \\ 1.60 \times 10^{-1} \\ 0.98 \times 10^{-1} \end{array}$
R-6#	150 256 400 418	$\begin{array}{c} 7.33 \times 10^{-3} \\ 5.87 \times 10^{-3} \\ 7.50 \times 10^{-3} \\ 5.02 \times 10^{-3} \end{array}$	$\begin{array}{r} 2.93 \times 10^{-2} \\ 5.09 \times 10^{-2} \\ 2.50 \times 10^{-2} \\ 2.15 \times 10^{-2} \end{array}$	$\begin{array}{r} 8.67 \times 10^{-2} \\ 2.39 \times 10^{-2} \\ 8.50 \times 10^{-2} \\ 6.46 \times 10^{-2} \end{array}$	$\begin{array}{c} 6.33\!\times\!10^{-2} \\ 3.68\!\times\!10^{-2} \\ 3.03\!\times\!10^{-2} \\ 2.78\!\times\!10^{-2} \end{array}$	$\begin{array}{c} 1.87 \times 10^{-1} \\ 0.72 \times 10^{-1} \\ 0.45 \times 10^{-1} \\ 0.41 \times 10^{-1} \end{array}$

(b) 钾铷灯相对有效辐射效率与灯功率的关系

图 3

从表 3 和图 3(a)都可以看出,在实验 的功率范围内, 钾汞灯在近红外区的两个 Nd³⁺:YAG 吸收带内的相对有效辐射效率, 开始时随着灯功率的增加而增大, 然后随着 灯功率的增加而减少。由于钾汞灯共振线自 吸收后的光谱蓝翼向短波方向移动过多(即 出现所谓"过返转"),结果使得 5670~6000Å 和 7275~7650Å 这两个带的相对有效辐射 效率不随灯功率的增加而增大,甚至是减少。 对于钾铷灯(图 3(b)),四个带的相对有效辐 射效率都是减少的。

钾汞灯的相对有效辐射效率随着灯功率 变化出现的这种关系,主要是灯内碱金属蒸 气压的变化影响了辐射特性。在适当的功率 水平,碱金属原子辐射谱正好落入 Nd³⁺: YAG 四个主要吸收带;当灯运转功率过高 时,灯内碱金属蒸气压太高,对灯的辐射产生 过分的共振吸收,使得灯的辐射谱返转增宽, 因而大部分辐射落入 Nd³⁺:YAG 四个主要 吸收带之外,于是相对辐射效率下降。

在整个实验功率范围内, 钾铷灯的相对 有效辐射效率都是下降的(图3(b))。这表

(a) 共振线间隔与灯输入功率的关系

明钾铷灯比钾汞灯在相同的功率条件下有更高的蒸气压,自吸收更严重,辐射谱返转增宽 大得多,增宽速度也更快(图3(b)曲线斜率 大)。

为直观地说明这一情况,图 4(*a*)给出了 共振线间隔与灯输入功率的关系;图 4(*b*)给 出了蓝翼、红翼谱线半极大全宽度与灯的输 入功率的关系。从图上看出,钾汞灯和钾铷 灯光谱辐射蓝翼和红翼峰值之间的间隔 4λ 以及蓝翼和红翼的半极 大值 全 宽度 $\left(\frac{1}{2}\lambda_{B}, \frac{1}{2}\lambda_{R}\right)$ 与功率增加近似成线性关系,而钾铷灯 的峰值间距 4λ 的变化比钾汞灯更迅速。对 于同一种碱金属蒸气灯,红翼半极大值展宽 $\left(\frac{1}{2}\lambda_{R}\right)$ 比蓝翼半极大值展宽 $\left(\frac{1}{2}\lambda_{R}\right)$ 更大。

根据这些变化特性,显然,合理地选择灯 的工作范围是完全必要的。

四、结 论

从碱金属蒸气灯的辐射特性测量可知, 为使碱金属蒸气灯与Nd³⁺:YAG达到有效的 (下转第464页)

• 468 •

(续表)

WILL TO VIET (1)	[010]Nd:YAP ^[2]		
热透镜焦距	· [1] · · · · · · · · · · · · · · · · · · ·	$f_{x_1=0}(x_1)$	"不是我的任何思想。" 1
$ + (P_{11}G_{1} + P_{11}, R_{0} + P_{13}R_{0}) m + (P_{11}G_{1} + P_{12}G_{1} + P_{23}G_{1}) $	$\frac{\partial f}{\partial t} \Big (Q r_0^2 + C_0 r^0)_{\mathfrak{g}}$	$ \frac{\eta P_{in}}{2\pi r_0^2 K_{33}} \left\{ \frac{\partial n_1}{\partial T} \right\} $	$+\frac{n_1^3}{2} \left[P_{11} \left(\frac{AM-BN}{AD-BS} + \alpha_1 \right) \right]$ $(DN-SM + \alpha_1)$
$n_1^* \approx n_1^* + \frac{n_2^*}{2} \left[\left(1 \frac{n_1}{n_1} + T_{D_1} + T_{D_2} + 2n_2 + 2n_1 \right) \right]$	$\frac{11}{2} \frac{1}{2} 1$	$+P_{12}a_2+P$ $+\frac{n_1^3LC_1}{AD-RS}$	$\left[\left(AP_{11}-SP_{13}\right)\right]$
1 + (C) (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	4) 2. (1-4) 46(1-1) 2. (1-4) 48(10+-0) 2.	$f_{x_3=0}(x_3)$	1
2473 3. 6. 64 Southills 1 al. 7 3 440 .	1 44 5 (L-28)	$=\frac{\eta P_{in}}{\left[\frac{\eta P_{in}}{2\pi r_0^2 K_{11}}\right]\left\{\frac{\partial n_3}{\partial T}\right\}}$	$\frac{n_3^3}{2} \left[P_{31} \left(\frac{AM - RN}{AD - RS} + \alpha_1 \right) \right]$ $(DN - SM + \alpha_1) \right]$
$= (2^{n-1} + (2^{n-1$	The Constant Page	$ + P_{32}\alpha_2 + P + \frac{n_3^3 L C_2}{A D - RS} $	$\frac{33}{AD-RS}+\alpha_3 \int \int (DP_{33}-RP_{31})$
$ + \left[(T_{11} - P_{11} - D_{12} + (T_{12} - P_{12}) D_{2} + (T_{12} - P_{12}) D_{2} + (T_{12} - T_{12}) D_{2} + (T_{12} $		$f_{x_1=0}(x_3)$	1
$= \overline{\mathcal{T}}\left(\mathcal{L}_{\mathcal{B}} \leftarrow P_{12}\right) \stackrel{2}{\underset{i}{\rightarrow}} \left(\mathcal{P}_{i3} \leftarrow \mathcal{F}_{13}\right) \stackrel{2}{\underset{i}{\rightarrow}} \left(\mathcal{P}_{i3}\right)$	N =	$\frac{\eta P_{in}}{2\pi r_0^2 K_{33}} \left\{ \frac{\partial n_3}{\partial T} - \frac{\partial n_3}{\partial T} \right\}$	$\frac{n_3^3}{2} \left[P_{31} \left(\frac{AM - BN}{AD - BS} + \alpha_1 \right) \right]$ $(DN - SM + \alpha_2) $
11 0. 5 . 300 F012 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		$\left\{\begin{array}{c} +P_{32}\alpha_2 + P\\ +\frac{n_3^3 L C_1}{A D - R S}\end{array}\right.$	$\frac{33}{AD-RS} + \frac{3}{33} $

考 文 献

J. D. Foster et al.; J. Appl. Phys., 1970, 41, No.
 9, 3656. W. Koechner et al.; IEEE J. Quant,

(上接第468页)

光谱匹配和具有高的泵浦效率,需要很好地 控制灯的功率使用范围。在我们采用的钾、 铷、汞填充量下,钾汞灯约是 220~320 瓦;对 于钾铷灯使用功率要求小于 250 瓦。腔内运 用功率还要更低些。因此,我们研制的碱金 属蒸气灯是低功率下运用的有效泵浦源。

(上接第477页)

高阶横模的 $\Delta S_{mn} \Delta \Omega_{mn}$ 随 (2m+1)(2n+1) 线 性增加的实质。

参考文献

- [1] H. Kogelnik, T. Li; Proc. IEEE, 1966, 54, 1312.
- [2] A. Maitland, M. H. Dunn; Laser Physics, North-Holland, Amsterdam 1969, p140, 156.

Electr., 1970, QE-6, No. 9, 557.

[2] 沈鸿元, «物理学报», 1981, 30, No. 8, 1085.

- [3] M. A. Karr; Appl. Opt., 1971, 10, No. 4, 893.
- [4] S.E. Miller; Bell System Tech. Journal, 1965, 44, 2017.

参考文献

- [1] 王焕灯等;《激光》, 1980, 7, No. 1, 52.
- [2] 范品忠等;《光源与照明》, 1979, No. 1, 30.
- [3] W. T. Bayha et al.; IEEE Transactions on Electron Devices, 1970, ED-17, No. 8,612.
- [3] Jahnke-Emde-Lösch; Tables of Higher Functions, McGraw-Hill, New York, 1960, p101~104.
- [4] J. W. 顾德门著;《傅里叶光学导论》, 中译本, 科学 出版社出版, 1976, p54~56.
- [5] R. N. Bracewell; The Fourier Transform and its Applications, McGraw-Hill, New York, 1978, p160.
- [6] W. Kleen, R. Müller; Laser, Springer-Verlag, Berlin 1969, p60~63.